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ABSTRACT
Intracranial atherosclerotic disease (ICAD) involves 
the build-up of atherosclerotic plaques in cerebral 
arteries, significantly contributing to stroke worldwide. 
Diagnosing ICAD entails various techniques that measure 
arterial stenosis severity. Digital subtraction angiography, 
CT angiography, and magnetic resonance angiography 
are established methods for assessing stenosis. High-
resolution MRI offers additional insights into plaque 
morphology including plaque burden, hemorrhage, 
remodeling, and contrast enhancement. These metrics 
and plaque traits help identify symptomatic plaques. 
Techniques like transcranial Doppler, CT perfusion, 
computational fluid dynamics, and quantitative MRA 
analyze blood flow restrictions due to ICAD. Intravascular 
ultrasound or optical coherence tomography have a very 
high spatial resolution and can assess the structure of 
the arterial wall and the plaque from the lumen of the 
target vascular territory. Positron emission tomography 
could further detect inflammation markers. This review 
aims to provide a comprehensive overview of the 
spectrum of current modalities for atherosclerotic plaque 
analysis and risk stratification.

INTRODUCTION
Intracranial atherosclerotic disease (ICAD) 
comprises atherosclerotic changes within the 
intracranial portion of the vasculature supplying 
the brain. This condition stands as a prevalent 
contributor to ischemic stroke and transient isch-
emic attacks, posing a substantial health challenge 
on a global scale.1 Studies estimate that 20–40 
individuals per 100 000 worldwide suffer cerebral 
infarctions associated with ICAD.2 Various efforts 
to characterize the vascular changes of intracranial 
disease have led to the description of multiple char-
acteristics of high-risk intracranial plaques such as 
degree of luminal stenosis, absence of collateral flow, 
plaque ulceration, plaque burden (PB), intraplaque 
hemorrhage (IPH), and plaque enhancement after 
the administration of contrast gadolinium (Gd).3 
Currently, there are various imaging modalities and 
techniques used to assess the extent and burden 
of atherosclerotic changes (table  1). This review 
aims to provide a summary of the diverse imaging 
modalities and methods of analyzing and character-
izing intracranial atherosclerotic changes.

Digital subtraction angiography (DSA) is a 
luminal imaging modality in which the intervention-
alist navigates a catheter through the vasculature. 
It is the gold standard for the diagnosis of luminal 

stenosis and provides unique real-time hemody-
namic information. CT angiography (CTA) uses 
radiation to assess the brain vasculature. It provides 
accurate information about the arterial lumen and 
can identify components of the plaque. MR angi-
ography (MRA) is a luminal modality that does not 
use radiation. It provides an accurate representation 
of the arterial lumen, but it cannot visualize the 
plaque components unless it is accompanied by a 
high-resolution MRI (HR-MRI) protocol. HR-MRI 
provides information about the arterial wall and 
the plaque. Transcranial ultrasound assesses the 
flow velocity to obtain indirect measurements of 
stenosis. It can provide hemodynamic information, 
but it does not assess the plaque’s characteristics. 
Intravascular ultrasound (IVUS) is a modality in 
which an ultrasound probe is navigated through the 
vasculature. It provides a very high spatial resolu-
tion due to proximity with the plaque; however, 
it remains an invasive modality. Optical coherence 
tomography (OCT) uses an intravascular probe to 
directly assess the plaque. Although it is an invasive 
imaging modality, it has very good correlation with 
the plaque components.

DETERMINATION OF DEGREE OF STENOSIS
Luminal stenosis plays a crucial role in assessing 
the risk profiles of atherosclerotic plaque. It refers 
to the narrowing or constriction of the arterial 
lumen caused by plaque formation. Stenosis is 
generally quantified by comparing the diameter 
or cross-sectional area of the constricted segment 
with that of a normal reference segment in the same 
artery.4 The widely used Warfarin-Aspirin Symp-
tomatic Intracranial Disease (WASID) criteria cate-
gorize stenosis into four grades: <50%, 50–69%, 
70–99%, and complete occlusion. In the WASID 
trial, higher degrees of stenosis were associated 
with worse outcomes.5 Imaging techniques such as 
DSA, MRA, and CTA are commonly used to assess 
the degree of luminal stenosis (figure 1 and table 1). 
Additionally, transcranial Doppler may also provide 
estimations of arterial stenosis.6 While DSA, CTA, 
and MRA directly measure the lumen to determine 
stenosis, transcranial Doppler indirectly estimates 
stenosis by assessing blood flow velocity.2 7

DSA provides detailed information about the 
anatomy, severity of the stenosis, and collateral 
circulation of the intracranial arteries. Its superior 
spatial resolution establishes DSA as the benchmark 
for luminal stenosis evaluation.4 8 Moreover, during 
DSA, endovascular procedures such as angioplasty 
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or stenting can be performed and immediate intervention 
outcomes can be evaluated.9 An additional benefit of DSA is the 
potential to obtain flow hemodynamics by direct visualization of 
contrast opacification in the target vascular territory and collat-
eral circulation, as well as through experimental approaches 
such as the use of a pressure guidewire for the measurement of 
fractional flow reserve (FFR).10 FFR is defined as the ratio of 
maximum flow in the presence of a stenosis to normal maximum 
flow.11 FFR evaluates the influence of ICAD on cerebral vascular 

dynamics, offering insights beyond what conventional stenosis 
measurements on DSA might reveal about downstream flow in 
the affected vascular territory.12 However, despite DSA’s detailed 
spatial resolution and hemodynamic data, it entails potential risks 
associated with the use of a catheter for intravascular access and 
selective injection of contrast. The rate of permanent neurolog-
ical complications after DSA has been reported to be as high as 
0.14%.13 The use of fluoroscopy exposes patients to cumulative 
radiation, particularly with multiple procedures.14 Moreover, 

Table 1  Pros and cons of atherosclerotic plaque imaging modalities

Pros Cons
Luminal
definition

Arterial wall and 
plaque Spatial resolution

Hemodynamic 
information

DSA 	► Provides accurate 
visualization of the 
arterial lumen

	► Interventions such 
as angioplasty and 
stenting can be 
performed during 
DSA

	► Allows the 
assessment of real-
time collaterals

	► Can assess fractional 
flow reserve

	► Invasive
	► Luminal modality unable to 

assess plaque burden
++++ +++ ++++ ++++

CTA 	► High sensitivity for 
plaque identification

	► Calcifications can be 
visualized

	► Less ideal for patients 
requiring follow-up imaging 
as it uses radiation

+++ +++ ++ +

MRA 	► Allows for 
visualization of 
luminal narrowing 
without radiation

	► Various modalities 
such as time of flight 
(TOF) or contrast 
enhanced (CE) 
imaging can be used. 
TOF is less accurate 
than CE in assessing 
luminal stenosis

	► Lower spatial resolution 
compared with DSA and 
CTA

	► Arterial wall is not 
visualized unless it is 
accompanied by a HR-MRI 
protocol

	► Contraindications to MRI, 
such as claustrophobia, not-
MRI compatible pacemaker, 
among others

+++ + ++ +

HR-MRI
	► Can visualize the 

arterial wall and 
plaque characteristics

	► Identifies non-
stenotic plaques with 
positive remodeling

	► Does not use 
radiation

	► Higher field of strength 
modalities such as 7T are 
not widely available

	► Contraindications to MRI, 
such as claustrophobia, 
among others

	► Very sensitive to movement 
artifact

	► Long acquisition depending 
on the protocol

+++ ++++ +++ +

Transcranial
US

	► Non-invasive
	► Provides direct 

hemodynamic 
information about 
the degree of 
stenosis and possible 
collateral flow

	► Cannot visualize the plaque 
directly

	► Information is based on 
indirect measurements of 
blood velocity

	► Operator dependent

+ + + ++

IVUS 	► Very high spatial 
resolution

	► Invasive
	► Neuro probes are not 

available
+++ ++++ ++++ +

OCT 	► Highest spatial 
resolution with good 
correlation with 
cellular components

	► Invasive
	► Limited access to neuro 

probes
++++ ++++ ++++ +

The accuracy of diagnostic ability is marked by the number of plus signs (+), from + (less accurate) to ++++ (most accurate).
CTA, CT angiography; DSA, digital subtraction angiography; HR-MRI, high resolution MRI; IVUS, intravenous ultrasound; MRA, MR angiography; OCT, optical coherence 
tomography.
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DSA is only a two-dimesional technique, and requires multiple 
projections to clearly define the degree of stenosis and the char-
acterisctics of an underlying plaque. In some instances such as 
acute mechanical thrombectomy, it is challenging to determine if 
the stenosis is caused by a plaque or a ‘fresh clot’.

CTA can visualize the arterial lumen and identify stenosis or 
occlusion. Nguyen-Huynh et al compared CTA and DSA in 41 
patients with 275 pairs of intracranial arteries.15 CTA performed 
very well compared with DSA for detection of ≥50% intracra-
nial stenosis, achieving high sensitivity, specificity, and negative 
predictive values. The Stroke Outcomes and Neuroimaging 
of Intracranial Atherosclerosis (SONIA) study validated non-
invasive imaging tests for ICAD against catheter angiography 
in a prospective and blinded multicenter setting.16 SONIA 
reported a positive predictive value of 13.3% and a negative 
predictive value of 83.8% for CTA when DSA defined stenosis 
as 70–99%.17 The study is more than 10 years from its publi-
cation and newer CT scans and post-processing techniques 

have enhanced the accuracy of CTA on detecting stenosis when 
compared with DSA. Duffis et al performed a study involving 
57 patients reporting a sensitivity of 96.6% and specificity of 
99.4% for CTA in diagnosing stenosis >50% compared with 
DSA.18 New artificial intelligence (AI)-driven algorithms have 
tested the performance of CTA compared with DSA in detecting 
stenosis. Yang et al analyzed 296 patients who underwent CTA 
and DSA. The agreements for the detection of stenosis between 
the deep learning algorithm that analyzed CTA and DSA were 
good, with kappa values of 0.754, 0.695, 0.714, and 0.754 at 
the per-patient, per-region, per-arterial, and per-segment levels, 
respectively. Although the diagnostic performance was variable 
and modest at some levels, such as the segment level, it was high 
at the patient level for stenosis ≥ 50% (sensitivity 0.895, speci-
ficity 0.938, area under the curve (AUC) 0.945).

CT perfusion (CTP) can also be used to identify areas of 
hypoperfusion due to the presence of ICAD. A study by de 
Havenon et al investigated the recurrence of symptomatic 

Figure 1  Imaging modalities for the assessment of intracranial atherosclerotic plaques. (A) Magnetic resonance angiography (MRA) shows a 
stenotic lesion (arrowhead) in the proximal segment of the middle cerebral artery (MCA). Nonetheless, it is not clear if the arterial segment is 
completely occluded or if there is a high-grade stenosis. (B) CT angiography (CTA) shows discontinuation of flow within the MCA (arrowhead). 
However, it is unclear if the affected arterial segment has an underlying plaque versus an area of dissection. (C) Digital subtraction angiography 
(DSA) shows a clear area of stenosis (arrowhead) with some neoangiogenesis. Based on the angiographic studies, it is unclear if the stenosis 
and Moyamoya-like neoangiogenesis is a primary Moyamoya disease versus a Moyamoya syndrome due to an advanced atherosclerotic process. 
(D) High-resolution MRI (HR-MRI) shows a heterogeneous gadolinium-enhancing plaque in the area of stenosis (arrowhead), suggesting that the 
neoangiogenesis is due to an advanced stenotic atherosclerotic process.
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ischemic stroke within 90 days in arterial territories exhibiting 
≥50% stenosis, as determined by perfusion imaging.19 Patients 
with hypoperfusion distal to the stenotic site had a higher like-
lihood of experiencing subsequent strokes in the same vascular 
territory (HR 6.80, 95% CI 2.31 to 20). It has been hypothesized 
that patients experiencing hemodynamic failure and possessing 
inadequate collateral circulation might benefit most from revas-
cularization procedures. A post hoc analysis of the Stenting 
and Aggressive Medical Management for Preventing Recurrent 
stroke in Intracranial Stenosis (SAMMPRIS) trial reported that 
impaired collateral flow correlated with recurrent strokes in the 
territory of the affected artery.20 Among those with watershed 
infarcts in the anterior circulation, 18.2% (10/55 patients) in the 
stenting group and 26.4% (14/53 patients) in the medical treat-
ment group suffered a recurrent stroke, although this difference 
was not statistically significant (P=0.30). CTP may be used to 
determine the presence of collaterals and areas of downstream 
hypoperfusion.

MRA offers a non-invasive alternative for imaging, using tech-
niques such as time-of-flight (TOF) MRA and contrast-enhanced 
(CE) MRA.21 22 However, MRA has lower spatial resolution than 
DSA and CTA. Bash et al studied 115 diseased arterial segments 
where CTA demonstrated higher sensitivity (98% vs 70%) and 
a positive predictive value (93% vs 65%) than TOF MRA for 
detecting intracranial stenosis.23 It is important to note that, like 
DSA, MRA is a luminal modality and by itself cannot provide 
information about the arterial wall and may be susceptible to 
motion artifacts due to longer acquisition times,6 potentially 
affecting image quality and diagnostic accuracy. However, MRA 
has the advantage that a HR-MRI protocol including T2, T1 and 
T1 post Gd sequences can be performed during the same session 
and increase the detection and characterization of plaques. 
Furthermore, new methods that use deep learning algorithms 
may increase the diagnosis of stenosis in MRA. Qiu et al created 
a training set consisting of 291 lesions and used the information 
to test a set of 120 arterial segments. Their deep learning model 
achieved a sensitivity of 64.2% and a positive predictive value of 
83.7% in detecting arterial stenosis in TOF MRA.24 The perfor-
mance of the algorithm decreased with moderate stenosis and 
smaller caliber arteries.

HR-MRI has progressively increased in use over the last 10 
years, with more than 50% of members of the American Society 
of Neuroradiology performing this technique at their respec-
tive institutions. The most common application of HR-MRI is 
for vasculopathy differentiation (93.9%), ICAD characteriza-
tion for symptomatic plaques (40.5%), and cryptogenic stroke 
assessment (40.9%).25 ICAD has distinctive imaging character-
istics on HR-MRI relative to other intracranial vasculopathies, 
specifically inflammatory vasculopathies, reversible cerebral 
vasoconstriction syndrome, and Moyamoya disease. On multi-
contrast HR-MRI, ICAD typically appears as eccentric lesions, 
outwardly remodeled, that have heterogeneous, intermediate, 
or a significant degree of post-contrast enhancement, and have 
a juxta luminal T2-weighted hyperintense signal (fibrous cap) 
with a deeper hypointense signal (lipid-rich necrotic core).26 
Mossa-Basha et al performed a study with 21 patients to explore 
how HR-MRI performed compared with luminal modalities in 
the diagnosis of Moyamoya-like vascular changes. There was 
significant improvement in diagnostic accuracy with luminal 
imaging and HR-MRI when compared with luminal imaging 
alone (87% vs 32%, P<0.001). The most common arterial wall 
MRI findings for Moyamoya disease were non-enhancing, non-
remodeling lesions without T2 heterogeneity. Atherosclerotic 
Moyamoya was characterized by eccentric remodeling, and T2 

heterogeneous lesions with mild to moderate and homogeneous 
to heterogeneous contrast enhancement.27 The same group 
later reported on the added benefit of HR-MRI in the differ-
entiation between ICAD, vasculitis, and reversible vasoconstric-
tion syndrome.28 The likelihood of a correct diagnosis in the 
setting of non-occlusive vasculopathy significantly increased 
when HR-MRI was evaluated in addition to luminal imaging 
(per-lesion: 36.1–88.8%, per-patient: 43.5–96.3%). HR-MRI 
also excels in analyzing plaque composition and characterizing 
plaque types. An ex vivo study of 53 intracranial arteries demon-
strated the high accuracy of 3T HR-MRI in identifying fibrolipid 
atheroma with a high interobserver agreement (κ=0.77).29

Although not routinely used in clinical practice, higher field 
of strength scans have been used in the analysis of arterial 
atherosclerotic changes. 7T HR-MRI allows for more accurate 
visualization of plaque features than 3T HR-MRI.30 Fakih et al 
performed an analysis of 44 symptomatic patients with under-
lying ICAD who were imaged with DSA, CTA, and 7T HR-MRI. 
HR-MRI included TOF MRA, T1 and T1+Gd sequences, 
and was deemed as the gold standard in the characterization 
of atherosclerotic plaques with luminal stenosis and outward 
growth. When compared with 7T HR-MRI, DSA had a sensitivity 
of 88%, 3T TOF-MRA 78%, and CTA 76% in identifying symp-
tomatic plaques.31 However, triage of patients for 7T HR-MRI 
is highly selective, and in this small cohort approximately 18% 
of patients had some contraindication to undergo a 7T-MRI. 
Other studies have confirmed that HR-MRI may surpass CTA in 
comparison to DSA in the evaluation of luminal stenosis. Liu et 
al conducted a comparative analysis between maximum intensity 
projection CTA and 3T HR-MRI to determine middle cerebral 
artery (MCA) stenosis against the gold standard DSA.32 They 
reported a stronger correlation between HR-MRI measurements 
and DSA, with a correlation coefficient of 0.68, in contrast to 
a coefficient of 0.45 for CTA. This underscores the accuracy of 
HR-MRI in the assessment of arterial stenosis.

HR-MRI also has the potential to characterize ICAD in 
patients with infarcts involving perforator arteries. While 
lacunar infarcts located in the basal nuclei, typically smaller than 
1.5 cm, have been historically attributed to small arterial disease, 
HR-MRI has shown a notable burden of ICAD along the ventral 
and inferior walls of the MCA, challenging traditional notions 
that small infarcts in the deep basal nuclei are lacunar and not 
related to ICAD. In cases of symptomatic MCA stenosis, a signif-
icant number of plaques are also found in the superior wall, a 
hotspot for perforators (P=0.001).33 A recent study by Meng 
et al analyzed 66 patients with symptomatic ICAD in the MCA 
who underwent endovascular treatment with percutaneous 
transluminal angioplasty.34 All the patients who suffered peri-
procedural complications had plaques located in the superior 
wall of the MCA, suggesting that angioplasty led to a ‘snow-
plow’ phenomenon in the perforators arising from the superior 
wall. Furthermore, research by Won et al indicates a higher 
frequency of perforating arteries associated with symptomatic 
plaques in the middle two-thirds of the M1 segment (41.4%).35 
Advanced imaging with 7T HR-MRI has identified key char-
acteristics of symptomatic plaques such as the involvement of 
the origin of lenticulostriate arteries (OR 28.51, 95% CI 6.3 to 
181) and plaque surface irregularity (OR 8.32, 95% CI 1.4 to 
64.7), with plaques with greater wall thickness (1.36 mm) being 
more symptomatic. These findings may elucidate stroke mech-
anisms in patients with ICAD, distinguishing artery-to-artery 
thromboembolism from perforator strokes caused by plaque-
induced occlusion at the origin of perforators. Recent studies 
suggest using submaximal angioplasty to conserve perforators 
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close to the stenotic lesion.36 HR-MRI may identify symptom-
atic plaques not amenable for endovascular intervention due to 
possible compromise of perforators at the time of angioplasty, 
causing a ‘snow-plow’ effect. Similarly, the mid segment of the 
basilar artery, enriched with perforators, has been identified as 
a common site for atherosclerotic plaques that lead to ischemic 
strokes, and that pose an increased risk of complications at the 
time of endovascular angioplasty.37

PLAQUE MORPHOLOGY BEYOND DEGREE OF STENOSIS
Luminal stenosis measurement has been a cornerstone for evalu-
ating atherosclerotic plaque severity and has traditionally guided 
the inclusion criteria for numerous neurointerventional trials. 
These trials, such as the SAMMPRIS and the Vitesse Intracranial 
Stent Study for Ischemic Therapy (VISSIT), have required cath-
eter angiography confirmation of 70–99% stenosis according 
to WASID criteria for patient selection.38 39 Recently, the China 
Angioplasty and Stenting for Symptomatic Intracranial Severe 
Stenosis (CASSISS) trial also implemented this strict luminal 
stenosis threshold to determine patient eligibility.40 However, 
the inability of these trials to conclusively demonstrate the supe-
riority of endovascular interventions might be attributed to a reli-
ance on an overly simplistic assessment of symptomatic stenosis, 
primarily based on luminal narrowing, while not considering 
plaque morphology and composition (see online supplemental 
table 1). A further assessment with HR-MRI to determine the 

PB instead of solely the degree of stenosis may aid in clinical 
decision making. This may be especially relevant in challenging 
scenarios such as non-stenotic atherosclerotic plaques. Trials 
using more detailed selection criteria, such as the Wingspan Stent 
System Post Market Surveillance (WEAVE) trial, have reported 
improved endovascular outcomes.41 In WEAVE, the criteria 
specified ICAD stenosis of 70–99% in arteries with a diameter 
of ≥2 mm. Submaximal angioplasty of 60% was applied to 
lesions near angiographically visible perforators. This approach 
significantly reduced the rate of periprocedural complications to 
2.6%, a significant improvement over the 14.7% observed in the 
SAMMPRIS trial. Additionally, the incidence of periprocedural 
stroke attributed to perforator occlusion was markedly lower in 
WEAVE at 0.7%, compared with 5.8% in SAMMPRIS.

Newer high-resolution imaging techniques provide a better 
characterization of the PB in symptomatic patients. Studies have 
confirmed that the degree of stenosis alone may not fully capture 
the complexity and hemodynamic significance of intracranial 
atherosclerotic changes.42–44 Notably, certain features of athero-
sclerotic plaques are better observed through HR-MRI. PB, 
enhancement after contrast-Gd administration, and the presence 
of IPH have emerged as potential biomarkers of plaque instability 
(figure 2).31 44–46 Sometimes the use of HR-MRI has expanded 
the diagnosis of ICAD in patients previously classified as having 
cryptogenic stroke.42 Wang et al conducted a systematic review 
of 463 patients with acute ischemic stroke who did not have 

Figure 2  Characteristics of intracranial atherosclerotic plaques. Based on WASID criteria, the degree of stenosis caused by an atherosclerotic 
plaque is an important risk factor for stroke; however, other morphological characteristics of the plaque are also very relevant. (1) Eccentric versus 
concentric plaques. (A) This digital subtraction angiogram (DSA) shows a plaque (arrowhead) causing significant stenosis in the distal internal 
carotid artery (ICA). (B) A 7T high-resolution MRI (HR-MRI) shows the presence of an enhancing and eccentric plaque (arrowhead), suggesting that 
the most likely etiolgy of this stenosis is intracranial atherosclerosis. (2) Plaque burden. (C) In this case, magnetic resonance angiography (MRA) 
of a patient with cryptogenic stroke in the posterior circulation shows a small irregularity in the basilar artery (inset, arrowhead). (D) A 7T HR-MRI 
shows a circumferential plaque with significant plaque burden, despite no evident luminal stenosis (arrowhead) on MRA. (3) Heterogeneity. (E) The 
heterogeneity of the signal intensity within the plaque is possibly associated with intraplaque hemorrhage (IPH), the presence of calcification, or a 
lipid core. A 7T HR-MRI enables visualization of a heterogeneously enhancing plaque (arrowhead). (F) Moreover, hyperintense areas in T1-weighted 
images are suggestive of regions of angiogenesis and IPH within the plaque (arrowhead). (4) Enhancement. (G) A basilar artery plaque in a patient 
with recurrent transient ischemic attacks (arrowhead). (H) The patient did not start maximal medical therapy and the levels of low-density lipoprotein 
and HbA1c increased over time. Follow-up imaging showed increased plaque enhancement (arrowhead).
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luminal stenosis on TOF MRA. In 50% of patients (233/463) 
an atherosclerotic plaque was identified with HR-MRI (95% CI 
46.1% to 55.1%).47

PB and plaque enhancement may be useful in discrimi-
nating between symptomatic and asymptomatic atherosclerotic 
plaques. A plaque is usually labeled as symptomatic if it is in 
the territory of the ischemic stroke.42 44 Two studies, one by 
Huang et al involving 91 plaques48 and another by Sanchez et al 
who studied 80 plaques,44 found that PB and enhancement after 
the administration of Gd were correlated with the presence of 
symptomatic plaques in patients with stroke symptoms due to 
ICAD. In contrast, the degree of luminal stenosis did not reliably 
identify symptomatic plaques. Both studies quantified PB and 
degree of stenosis through multiplanar measurements, which 
involved post-acquisition processing with selection of regions of 
interest (ROIs). Similarly, Shi et al analyzed 190 plaques with 3T 
HR-MRI and processed the signal intensity of T1 and T1+Gd 
sequences to generate histograms.43 The distribution of signal 
intensity of atherosclerotic plaques was sampled with manu-
ally selected ROIs. IPH (P=0.009) and enhancement ratio in 
CE T1-weighted images (P=0.006) identified symptomatic and 
non-symptomatic plaques located in the basilar artery (BA). The 
authors divided stenosis into the following categories: <50%, 
50–70%, >70%. Stenosis category was not associated with 
lesion type for either the MCA or BA as nearly 90% of symptom-
atic lesions had a degree of luminal stenosis of <70%. The study 
highlighted the potential benefit of a histogram-based analysis of 
signal intensity in the characterization of atherosclerotic plaques.

Because of their deep location and small size, it is hard to visu-
alize and isolate the components of intracranial atherosclerotic 
plaques. Additionally, the thickness of the arterial walls within 
the circle of Willis may vary across both healthy and patholog-
ical segments, typically ranging from 0.45 to 0.66 mm.49 This 
range is below the isotropic resolution recommended for intra-
cranial vessel wall MRI by the Vessel Wall Imaging Study Group 
of the American Society of Neuroradiology.50 A histogram-based 
analysis as described by Shi et al43 may capture minor differ-
ences in the plaque morphology that are otherwise not apparent 
on conventional two-dimensional (2D) multiplanar views. The 
wider signal intensity dispersion in T1-weighted images suggests 
a heterogenous composition within the arterial wall which may 
include lipids, IPH, calcium and fibrous tissue. IPH is especially 
relevant as it may be the result of the accumulation of blood 
within the plaque, maybe from the rupture of fragile neovascu-
larized arteries within the unstable plaque.51 IPH is associated 
with local inflammation and progression of atherosclerosis. 
In proximal internal carotid disease, IPH was identified as 
areas within the plaque that have 150% higher signal inten-
sity compared with the adjacent muscle.52 53 T1-weighted MR 
sequences are commonly used to detect IPH because the degra-
dation of a hemorrhage produces methemoglobin, which results 
in T1 shortening and correspondingly causes high-signal inten-
sity on T1-weighted MRI. Zhu et al performed a study using 3T 
HR-MRI on 122 BA atherosclerotic plaques and found that IPH 
was the strongest independent predictor of symptomatic status 
(OR 27.5).46 IPH may also be a marker for stroke recurrence. 
Takaya et al imaged 154 subjects using 1.5T HR-MRI at baseline 
and followed them for an average of 38.2 months. Notably, the 
presence of IPH (HR 5.2; P=0.005) and a larger maximum wall 
thickness (HR for a 1 mm increase of 1.6; P=0.008) increased 
the risk of subsequent ischemic events.54 Moreover, Zhu et al 
analyzed 22 BAs with IPH and noted that IPH can be present in 
both low-grade (<50%) and high-grade (>50%) stenotic BAs.46 
In our experience, the adjudication of IPH is challenging due 

to the small size of atherosclerotic plaques (average thickness 
1.4 mm), artifact introduced by movement and venous contam-
ination, incomplete suppression of the cerebrospinal fluid and 
blood, and the subjectivity of the adjudicator.44 Furthermore, 
hyperacute IPH may initially appear T1-isointense and transition 
to T1-hyperintensity during subacute and chronic stages.3

PB quantifies the amount of arterial remodeling or wall 
thickening in relation to the arterial lumen and is assessed by 
measuring the reduction in the cross-sectional area of the lumen 
at the site of the plaque compared with a reference arterial 
segment.55 Plaques can remain non-stenotic despite having a 
high PB due to the outward thickening of the arterial wall. In 
other words, the arterial wall can undergo a process of outward 
growth without affecting the arterial lumen. This process is called 
‘positive remodeling’ and has been correlated with the occlusion 
of small perforators and plaque instability. As discussed earlier, 
the occlusion of perforators is one of the main mechanisms in 
strokes caused by the presence of plaques in the superior wall of 
the MCA or the mid portion of the BA.33 37 Studies in coronary 
arteries have shown that plaques can grow up to 40% of PB 
without causing luminal stenosis.56 Conversely, negative remod-
eling involves an inward thickening of the arterial wall.31 Two 
meta-analyses noted that positive remodeling was significantly 
associated with downstream ipsilateral stroke (OR 6.19 and OR 
5.60).57 58 A higher PB is generally associated with an increased 
risk of plaque instability. Sanchez et al analyzed 36 patients 
imaged with 7T HR-MRI and reported that a higher PB was 
associated with the presence of symptomatic plaque in patients 
with multiple plaques (OR 6.1).44 The mean PB for symptom-
atic plaques was 85±13 and for non-symptomatic plaques was 
65±14.44 Monitoring changes in PB over time may provide valu-
able information regarding disease progression or response to 
medical therapy. In a study conducted by Sun et al involving 
176 patients assessed with 3T HR-MRI, a 10% increase in PB 
correlated with a 2.4-fold increase in the OR for experiencing 
a recurrent stroke.59 Another study using 3T HR-MRI observed 
that progression of PB was significantly associated with recur-
rent ischemic events (HR 6.29).60 PB progression has also been 
correlated with the response to maximal medical therapy and 
the lipid profile. In a pilot study of five patients who were 
diagnosed with the presence of symptomatic atherosclerotic 
plaques and who received high-intensity statins, 7T HR-MRI 
demonstrated that PB decreased in parallel to decreased levels 
of low density lipoprotein at follow-up (r=0.82).61 Similarly, 
Guo et al analyzed 37 patients who underwent a 3T HR-MRI 
at baseline and at 1 year. The images were analyzed with the 
multitime point, multicontrast, and multiplanar viewing work-
flow called MOCHA. Longitudinal 3D intracranial arterial wall 
imaging showed that symptomatic plaques underwent luminal 
expansion. Interestingly, the presence of diabetes was associated 
with the progression of ICAD. Patients with diabetes had a 6.7% 
increase in wall thickness and a 6.6% decrease in lumen area 
at follow-up.62 Larger studies with 3T HR-MRI may confirm 
if maximal medical therapy can be tailored to morphological 
changes in the plaque and arterial wall.

Increased contrast-Gd uptake within the plaque results in 
higher enhancement and increased signal intensity in T1-weighted 
images. HR-MRI can be used to determine the amount of contrast 
enhancement of the plaque and the parent artery.42 44 Plaque 
enhancement has been correlated with increased inflamma-
tion and angiogenesis. As part of the process of atherosclerosis, 
neoangiogenesis can occur within the structure of the athero-
sclerotic artey. These fragile and leaky arteries can contribute 
to plaque enhancement. Millon et al studied 69 patients who 
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underwent carotid endarterectomy and were imaged with 3T 
HR-MRI. Gd enhancement was observed in 59% of patients. 
Fibrous cap rupture (P=0.043), IPH (P<0.0001), and plaque 
enhancement (P=0.034,) were significantly more frequent in 
symptomatic than in asymptomatic plaques. Histological anal-
ysis showed that Gd enhancement was significantly associated 
with the presence of vulnerable plaques (American Heart Asso-
ciation VI, P=0.006), neovascularization (P<0.0001), presence 
of macrophages (P=0.030), and loose fibrosis (P<0.0001). 
The prevalence of neoangiogenesis, macrophages, and loose 
fibrosis in the area of enhancement was 97%, 87%, and 80%, 
respectively.63

Multiple meta-analyses have reported a significant associa-
tion between plaque enhancement and the risk of downstream 
stroke (OR 10.8,64 OR 10.09,57 and OR 7.4258), suggesting 
that plaques that enhance are more likely to rupture. Studies 
using 3T HR-MRI have also shown that higher enhancement 
ratios, which are measured by generating a ratio between the 
plaque enhancement in post-contrast and pre-contrast images, 
are more likely in patients with recurrent strokes compared with 
patients with only one ischemic event (OR 2.5).59 Similarly, 
another prospective study that used 3T HR-MRI to follow 61 
patients with ICAD during 56.3±16.9 months observed that a 
post-contrast enhancement ratio of >1.77 was an independent 
predictor of future strokes.65 Additionally, plaque enhance-
ment could potentially be used in monitoring the response of 
plaques to medical therapies (figure 3). Chung et al performed 
3T HR-MRI on 77 patients with ICAD who were treated with 
statins. At the follow-up assessment it was observed that statin 
therapy led to a significant reduction in the volume of plaque 
enhancement.66 As mentioned earlier, a pilot study performed 

by Sanchez et al with 7T HR-MRI on five patients with ICAD 
showed that comprehensive medical management including 
statins was associated with lower levels of low density lipopro-
tein cholesterol and reduced plaque enhancement at follow-up 
with a correlation coefficient of 0.8.61

OBJECTIVE QUANTIFICATION OF PLAQUE ENHANCEMENT 
WITH HR-MRI
Subjective quantification of atherosclerotic plaque enhancement 
remains a challenge due to various factors that can affect image 
quality. Incomplete cerebrospinal fluid and blood suppression 
can be mistaken as enhancement on post-contrast T1 images.67 
Furthermore, technical factors such as windowing and volume 
averaging may impact the accurate identification of enhance-
ment.68 69 ‘Slow-flow artifact’ is another concern, where the 
vessel walls may appear artificially thickened due to insuffi-
cient suppression of the blood signal at the periphery, resulting 
from slow laminar flow.3 Additionally, the presence of the 
vasa vasorum along the proximal intracranial segments of the 
internal carotid artery (ICA) and the vertebral artery (VA) just 
beyond dural penetration may show mild enhancement, which 
can be mistakenly interpreted as enhancement of the vessel wall 
itself.69 To overcome these limitations, quantitative methods 
for assessing enhancement have been developed (see online 
supplemental table 2). One such method is the enhancement 
ratio, which compares the signal intensity in the post-contrast 
T1-weighted image with the pre-contrast T1. This method 
can potentially differentiate between symptomatic and asymp-
tomatic plaques.43 Another approach calculates the contrast 
ratio between the plaque and the pituitary stalk. Huang et al 
performed 3T HR-MRI on 91 patients with ICAD and identified 

Figure 3  Three-dimensional plaque enhancement analysis. (A) An atherosclerotic plaque in the middle cerebral artery (black arrowhead). The plaque 
is enhanced with the administration of contrast gadolinium (Gd). This enhancement is visualized as high signal intensity. (B) On histogram analysis 
the first black curve represents the signal intensity in T1-weighted images. The second red curve swifts to the right as the signal intensity increases 
in T1-post Gd weighted images. (C, D) The increased Gd enhancement is visualized in 3D color maps. Color maps show high enhancement in areas 
of luminal stenosis (black arrowhead). (E) The same plaque is imaged at follow-up after initiation of maximal medical therapy (black arrowhead). 
The plaque enhancement has decreased significantly on visual assessment compared with the baseline plaque (white arrowhead). (F) On histogram 
analysis, the plaque barely captures contrast and the shift in the post-contrast curve is markedly reduced compared with the baseline histogram. (G, 
H) Plaque color maps show an objective change in enhancement at follow-up compared with baseline imaging. Areas of increased Gd enhancement 
(shown in yellow) have almost disappeared (black arrowhead).
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that a contrast ratio stalk of 0.56 or more had a sensitivity of 
68.3% and a specificity of 81.8% in identifying symptomatic 
plaques.48 Similarly, Fakih et al used 7T HR-MRI to study plaque 
enhancement with a contrast ratio stalk. A threshold of 0.53 had 
a sensitivity of 78% and a specificity of 62% for symptomatic 
plaque detection.42

While previous methods focused on 2D multiplanar measure-
ments, recent advancements have introduced 3D analysis tech-
niques (figure  4). Sanchez et al developed a post-acquisition 
processing method to generate 3D color maps of arterial 
and plaque enhancement, with dozens of orthogonal probes 
projecting into the plaque to sample its signal intensity. On 
average, 125±79 data points per plaque and 858±564 per arte-
rial segment are obtained through this post-acquisition method. 
In this 7T HR-MRI study, 3D color maps generated from the 
analysis of Gd uptake were the most accurate metric for iden-
tifying symptomatic plaques (OR 3.9). A multivariate model 
combining 3D Gd uptake and PB demonstrated 83% sensi-
tivity and 86% specificity for identifying symptomatic plaques 
in patients with various plaques. Moreover, 3D Gd enhance-
ment was more sensitive (86% vs 70%) and specific (71% vs 
68%) in identifying symptomatic plaques than conventional 2D 
measurements. This 3D method also allows for a comprehensive 
assessment of plaque signal intensity, potentially allowing for a 
detailed analysis of the plaque components. For instance, athero-
sclerotic plaques with IPH had a higher SD on the histogram 
generated through 3D mapping,44 suggesting that plaques with 
IPH have a more heterogeneous distribution of signal intensity 
and therefore achieve higher SD.

Recently, radiomics has emerged as a new tool for assessing 
atherosclerotic plaques by extracting multiple variables from 
single voxels. Unlike traditional methods that rely solely on raw 
signal intensity values, radiomics provides a comprehensive anal-
ysis that explores various features. It quantifies histogram-based 
values, textural values that capture the interaction of individual 

voxels, and shape-based features.70 Radiomics analysis has been 
previously used with great success in oncology by estimating 
cell heterogeneity and characteristics, and ultimately improving 
diagnostic accuracy.71 Recently, there has been a growing body of 
evidence supporting the application of radiomics in the imaging 
of ICAD, indicating its potential to improve the understanding 
and management of this condition. In a study by Shi et al, a 
radiomics-based analysis was performed on 96 patients who 
underwent 3T HR-MRI. The study incorporated established 
high-risk characteristics such as minimal luminal area, presence 
of IPH, and Gd enhancement. Additionally, the authors devel-
oped a radiomic model based on these features. The perfor-
mance of the radiomic model was superior to the traditional 
model, with an AUC of 0.93 compared with 0.83. When the 
two models were combined, an even higher performance was 
achieved with an AUC of 0.97.72 This study suggests that radio-
mics has the potential to provide a comprehensive assessment of 
atherosclerotic plaques. Although radiomics holds great poten-
tial in the characterization of atherosclerotic plaques, there is 
still a need for a correlation between specific radiomic features 
and histological findings.

HEMODYNAMIC ANALYSIS OF INTRACRANIAL 
ATHEROSCLEROTIC PLAQUES
Computational fluid dynamics (CFD) offers insights into the 
interactions between blood flow and arterial walls. One of 
the key measurements obtained from CFD is Wall Shear Stress 
(WSS), which quantifies the tangential force exerted by blood 
flow on the arterial wall (figure 4).73 WSS is further defined by 
time-averaged Wall Shear Stress (TAWSS) and the Wall Shear 
Stress Gradient (WSSG). TAWSS reflects the average changes in 
WSS across cardiac cycles,74 and WSSG quantifies the magni-
tude of changes in the WSS along blood vessels. Additionally, 
the Oscillatory Shear Index assesses variations in WSS vector 
magnitude throughout the cycle.75 Under normal physiological 

Figure 4  Imaging analysis method for evaluation of intracranial atherosclerotic plaques. (A) Magnetic resonance angiography provides a luminal 
view of a proximal middle cerebral artery atherosclerotic plaque causing significant stenosis (arrowhead). (B) Computational fluid dynamics simulates 
the flow through the stenotic area and can calculate the approximate shear forces through the area of stenosis (arrowhead). The stenosis leads to 
a transition from laminar flow to turbulent flow. (C) A three-dimensional (3D) analysis of the arterial wall (arrowhead) shows circumferential wall 
thickening (plaque burden) with inward stenosis. Areas of increased wall enhancement are shown in yellow. (D) The plaque is highly enhancing after 
the administration of contrast-gadolinium (Gd) (arrowhead), and the area of enhancement is clearly visualized in the 3D color map (inset). (E) First-
order metrics such as histogram analysis can be derived from arterial wall mapping. In the depicted case, the histogram clearly indicates plaque 
enhancement following Gd administration, as evidenced by the tail of the histogram. (F) A voxel-based radiomic analysis can lead to the generation 
of second-order metrics based on the distribution of signal intensity. Emerging methods such as radiomics also facilitate the analysis of dimensional 
features of atherosclerotic plaques including volume, size, and diameter.
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conditions, a minimal gradient of shear stress is exerted by blood 
flow on the inner vessel wall.76 Research suggests that low WSS 
may contribute to the development of arterial plaques, often 
occurring at points of arterial bifurcation or in regions where 
blood recirculation is common.77 78 Chen et al conducted a 
comparative study between 94 MCA plaques in patients with 
atherosclerosis and 50 normal MCAs, and found that low WSS 
was prevalent in plaque-affected areas.79 Low WSS may increase 
endothelial cell turnover and lipid accumulation, particularly in 
areas with erratic flow. This is partly attributed to the expan-
sion of gap junctions between endothelial cells, which may 
facilitate the uptake and deposition of lipids, promoting plaque 
formation.80–82

CFD analysis may shed light on the morphological transfor-
mations within atherosclerotic plaques post-formation. Symp-
tomatic plaques are often characterized by a large lipid core 
beneath a delicate fibrous cap. The rupture of this cap leads 
to platelet adhesion and subsequent thrombus formation, a 
process that significantly contributes to the onset of ischemic 
strokes.38 83 Huang et al investigated 35 patients with BA 
plaques with ruptured fibrous caps.84 The presence of a ruptured 
fibrous cap correlated with increased WSS proximal to arterial 
stenosis compared with those without ruptured fibrous caps. 
This suggests a potential link between WSS and plaque vulnera-
bility. Furthermore, Woo et al examined 110 patients to explore 
the relationship between WSS distribution and stroke.85 They 
discovered that patients at risk of artery-to-artery embolism 
often had localized high WSS, which may precipitate plaque 
instability and subsequent rupture, underscoring the importance 
of WSS as a potential factor in distinct stroke mechanisms.

WSS patterns can change with the regression of intracranial 
stenosis. This may occur when plaques remodel in response 
to optimal medical therapy. Lan et al studied 39 patients with 
ICAD who underwent a CTA at baseline and at 1-year follow-up. 
Lesions with a higher maximum WSS and a larger high-WSS 
area were more likely to have regression of luminal stenosis at 
follow-up after maximal medical therapy. Higher focal WSS 
may improve along with decreased stenosis under appropriate 
medical therapy.86 While WSS offers valuable insights into the 
fluid dynamics of atherosclerosis, it is crucial to acknowledge 
the multifactorial nature of fluid mechanics.87 For instance, 
factors such as age, blood pressure, and body mass index may 
alter WSS.88 Additionally, conducting CFD analysis demands 
substantial technical proficiency and has not yet become univer-
sally adopted.

Phase-contrast quantitative MRA (QMRA) has been used to 
assess arterial blood flow within the vertebrobasilar (VB) system, 
providing insights into collateral flow and the hemodynamic 
consequences of luminal stenosis.89 In the VERiTAS study, 
Amin-Hanjani et al examined patients who had experienced a 
recent VB transient ischemic attack or stroke and had at least 
50% atherosclerotic stenosis or occlusion in the VB system.90 
Flow measurement using QMRA suggested that patients with 
reduced distal flow faced a significantly increased risk of subse-
quent stroke if they had symptomatic atherosclerotic VB disease 
(HR 11.5, 95% CI 1.8 to 17; P=0.008). Shakur et al studied 
44 patients with carotid stenosis using the post-processing tool 
derived from QMRA known as Noninvasive Optimal Arterial 
Analysis software (NOVA). In their study, a higher percentage 
stenosis and smaller residual lumen were associated with a signif-
icant decrease in ICA flow.91 Additionally, it was observed that 
the mean MCA flow ratio between the affected and unaffected 
sides was significantly reduced in patients exhibiting symptoms 
as opposed to those without symptoms.

INTRALUMINAL IMAGING OF ATHEROSCLEROTIC PLAQUES
IVUS involves the insertion of a catheter-mounted ultrasound 
probe into the blood vessel of interest, providing real-time, 
high-resolution images of the arterial lumen and the underlying 
arterial wall.92 IVUS provides detailed information about the 
characteristics of atherosclerotic plaques. Nair et al imaged 88 
ex-vivo coronary plaques and found a high correlation between 
IVUS radiofrequency analysis and histopathological findings.93 
IVUS enables the assessment of plaque morphology, including 
plaque eccentricity, ulceration, and remodeling. It can visualize 
the size, shape, and surface characteristics of the plaque, aiding 
in the understanding of plaque stability and the risk of plaque 
rupture. Dabus et al used IVUS to determine the formation of 
pseudoaneurysms in patients with ICAD who underwent intra-
cranial stenting.94 IVUS clearly defined the presence of ulcer-
ations on large plaques that had positive remodeling and that 
looked on luminal DSA as new aneurysms. Although IVUS is a 
potential imaging technique, it remains an invasive procedure 
and its use in the intracranial arteries has been limited to case 
series.95 96

OCT is an alternative to IVUS. Although OCT has lower 
tissue penetration compared with IVUS (1–3 mm vs 4–8 mm),92 
it provides higher resolution (1–15 µm vs 100 µm).97 OCT can 
add great value in determining the morphological characteris-
tics of the arterial wall (figure  5).98 Shi et al correlated OCT 
with the presence of macrophages on histological analysis. Ex 
vivo OCT images were co-registered with histopathology in 282 
cross-sectional pairs from 19 carotid endarterectomy specimens. 
Subsequently, they performed clinical analysis of 93 patients 
who were analyzed with OCT and then analyzed the burden of 
macrophage infiltration. Using the OCT data and histological 
analysis, the authors generated an algorithm that had a sensitivity 
of 88% and a specificity of 74.9% for detecting macrophage 
infiltration. OCT showed that macrophage infiltration was much 
more predominant in ruptured plaques than in non-ruptured 
plaques (83.7% vs 32.0%, P<0.001).98 Similarly, Yabushita et 
al correlated 357 atherosclerotic arterial OCT images with their 
histological analysis obtained at autopsy. Calcific nodules were 
identified with OCT with 96% sensitivity and 97% specificity. 
Finally, in a comparative analysis, Jang et al examined 42 coro-
nary plaques to assess the diagnostic capabilities of OCT versus 
IVUS in plaque characterization. OCT was more effective than 
IVUS in identifying features such as intimal hyperplasia and echo-
lucent regions, potentially indicative of lipid pools.99 Autopsy 
studies have shown that OCT can identify plaques with >10% 
macrophage density within the fibrous cap and with microchan-
nels representing neovascularization.100 OCT has great clinical 
potential in identifying atherosclerotic lesions due to its higher 
spatial resolution compared with HR-MRI.101 Similar to IVUS, 
OCT is an invasive imaging technique with the potential risk of 
complications, including arterial dissection.102 Developments in 
high-frequency OCT technology are ongoing, with the creation 
of newer and softer OCT probes that are expected to enhance 
the intraluminal characterization of atherosclerosis in the fore-
seeable future.103

FUNCTIONAL IMAGING OF ATHEROSCLEROSIS THROUGH 
POSITRON EMISSION TOMOGRAPHY
The previously described imaging methods focus solely on eval-
uating plaque morphology, yet they do not completely quantify 
functional aspects of atherosclerotic plaque formation. This is a 
multifaceted process involving inflammation, macrophage accu-
mulation, lipid deposition, and smooth muscle migration.104 
Positron emission tomography (PET) employs positron-emitting 
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radioligands such as 18F-fluorodeoxyglucose (FDG) that can 
accumulate at these biological processes. This accumulation 
results in a concentrated emission of positrons, which promptly 
interact with electrons in nearby tissues, leading to biochem-
ical reactions. These reactions generate gamma photons 
that are detectable by the PET scanner.105 Rudd et al imaged 
eight patients with symptomatic carotid atherosclerosis using 
18F-FDG-PET. Six of these patients had bilateral carotid plaques 
and two had normal contralateral arteries. Symptomatic carotid 
plaques were visible in the FDG-PET images acquired 3 hours 
after FDG injection. The estimated net FDG accumulation rate 
in symptomatic lesions was 27% higher than in contralateral 
asymptomatic lesions. Interestingly, no measurable FDG uptake 
was observed in carotid arteries without plaque.106 Similarly, 
Liu et al conducted a study analyzing 13 histological specimens 
using PET. They found that regions with high FDG uptake were 
significantly more likely to contain inflammatory cells (P<0.001) 
and neovasculature (P=0.008) compared with regions with low 
FDG uptake. Additionally, areas with complex inflammatory cell 
infiltrate, characterized by co-localized macrophages, lympho-
cytes, and foam cells, showed the highest FDG uptake among 
inflammatory subgroups (P<0.001).107 PET has also been used 
in the assessment of non-stenotic plaques. Davies et al imaged 12 
patients with symptomatic carotid disease using FDG-PET and 
HR-MRI. Interestingly, three patients had non-stenotic lesions 
identified on HR-MRI that had a high level of FDG uptake. All 
three of the highly inflamed non-stenotic lesions were located 
in a vascular territory compatible with the patients’ presenting 
symptoms.108 Finally, PET has the potential to evaluate neoan-
giogenesis in the setting of ICAD. A recent study by Shu et al 
used Ga-NOTA-PRGD2, a marker that binds to activated endo-
thelial cells, to evaluate angiogenesis in patients with ICAD. 
Ga-NOTA-PRGD2 uptake in the peri-infarct, subcortical, and 
periventricular regions of the symptomatic side was higher than 
the contralateral hemisphere (P=0.001).109

CONCLUSION
Evaluating ICAD solely by the degree of luminal stenosis fails to 
capture the complexity of atherosclerotic changes within cere-
bral arteries. Advanced imaging techniques such as HR-MRI 
offer a more nuanced assessment, identifying specific plaque 
characteristics linked to a higher risk of symptomatic ICAD. 
These characteristics include PB, IPH, and post-Gd plaque 
enhancement—markers associated with active inflammation 

and symptomatic plaques. Such detailed features are beyond the 
reach of traditional luminal imaging like CTA, MRA, and DSA. 
Enhanced post-processing methods, including 3D enhancement 
mapping and radiomic analysis, are pioneering new metrics for 
ICAD evaluation and monitoring the efficacy of medical treat-
ments. These require clinical validation to ensure their utility 
and accuracy in clinical practice. Physiological metrics such as 
CFD analysis and QMRA further characterize hemodynamic 
plaque characteristics, providing insights beyond mere stenotic 
measurements. OCT, despite being an invasive method with 
restricted availability, stands out for its unparalleled spatial 
resolution among imaging modalities, offering an exceptionally 
detailed view of plaque morphology. PET is a promising research 
tool as it can potentially identify inflammatory markers within 
the plaque. These advanced technologies promise to refine our 
understanding and treatment of ICAD, moving beyond tradi-
tional models to a more comprehensive and tailored approach.
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