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ABSTRACT
Endovascular electrode arrays provide a minimally 
invasive approach to access intracranial structures 
for neural recording and stimulation. These arrays 
are currently used as brain–computer interfaces 
(BCIs) and are deployed within the superior sagittal 
sinus (SSS), although cortical vein implantation could 
improve the quality and quantity of recorded signals. 
However, the anatomy of the superior cortical veins is 
heterogenous and poorly characterised. MEDLINE and 
Embase databases were systematically searched from 
inception to December 15, 2023 for studies describing 
the anatomy of the superior cortical veins. A total of 
28 studies were included: 19 cross-sectional imaging 
studies, six cadaveric studies, one intraoperative 
anatomical study and one review. There was substantial 
variability in cortical vein diameter, length, confluence 
angle, and location relative to the underlying cortex. The 
mean number of SSS branches ranged from 11 to 45. The 
vein of Trolard was most often reported as the largest 
superior cortical vein, with a mean diameter ranging 
from 2.1 mm to 3.3 mm. The mean vein of Trolard was 
identified posterior to the central sulcus. One study 
found a significant age-related variability in cortical 
vein diameter and another identified myoendothelial 
sphincters at the base of the cortical veins. Cortical vein 
anatomical data are limited and inconsistent. The vein of 
Trolard is the largest tributary vein of the SSS; however, 
its relation to the underlying cortex is variable. Variability 
in cortical vein anatomy may necessitate individualized 
pre-procedural planning of training and neural decoding 
in endovascular BCI. Future focus on the relation to the 
underlying cortex, sulcal vessels, and vessel wall anatomy 
is required.

INTRODUCTION
Neurointervention has grown rapidly in recent 
decades, mirroring the advancements in inter-
ventional cardiology observed in the mid to late 
20th century.1 2 This growth has been driven by 
the development of minimally invasive inter-
ventions for vascular pathologies such as stroke 
and cerebral aneurysm.1 Despite these advances, 
there is a notable absence of endovascular electro-
physiological interventions to treat neurological 
disease. In cardiology, the parallel development 
of permanent transvenous pacing, cardiac abla-
tion, and cardiac mapping transformed patient 
outcomes using cardiac electronic devices.3 Similar 
breakthrough devices are beginning to emerge in 

neurointervention, including stent electrode arrays 
and microscale robotic devices.

An early application of neurovascular electronic 
devices is brain–computer interfaces (BCIs). BCI 
devices serve as a bypass for neurological lesions 
between the cerebral cortex and the musculature,4 
facilitating prosthetic limb control,5 speech resto-
ration,6 and the control of digital devices.7 While 
intracranial BCI devices typically require burr hole 
craniotomy, endovascular BCI7 is a novel approach 
which is both scalable8 and minimally invasive.

The preferred target for endovascular BCI is 
the superior venous system, comprising the supe-
rior sagittal sinus (SSS) and its tributary veins 
(figure  1). This is due to the proximity of these 
vessels to primary and secondary sensorimotor 
cortices,9 providing the opportunity for both high-
fidelity decoding of motor intent10 and the delivery 
of sensory feedback.11 While current devices are 
deployed in the SSS,7 the smaller cortical vessels 
of the superior venous system are subdural and in 
closer association with the cortex.12 Targeting the 
cortical vessels therefore presents both an opportu-
nity to improve signal-to-noise ratio and to increase 
the number of useful implants per individual.

In contrast to the venous sinuses, the numerous 
superior cortical veins are highly heterogenous and 
poorly characterized.13 14 Notable superior cortical 
vessels include the vein of Trolard (superior anas-
tomotic vein) and the Rolandic vein (central sulcal 
vein), along with many vessels draining the pial 
surface and bridging the subdural space to join 
the SSS. Attempts to characterize superior venous 
anatomy have historically been made to aid neuro-
surgical planning, primarily in cases of parasag-
ittal meningioma.15 These investigations have used 
imaging studies16 and cadaveric microsurgical 
studies,14 although samples have been small and no 
study has collectively reviewed the findings. Impor-
tantly, no study has considered these vessels in the 
context of endovascular device implantation.

In addition to a growing interest in cerebral 
venous disorders,17 the emergence of endovascular 
BCI18 has generated a pressing clinical need to 
develop a detailed understanding of this anatomy. 
This understanding requires a novel emphasis 
on vessel confluence angles, diameter, wall 
mechanics, and relationship to underlying cortex. 
All these features have implications for device 
design, preoperative planning, and subsequent 
decoding of neural signals. The importance of an 
improved understanding of vascular anatomy has a 
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historical precedent in cardiology, where better characterization 
of the coronary venous system was developed to support pre-
procedural planning in cases such as left ventricular pacing and 
ablation therapy.19

The aim of this systematic review is to provide a comprehen-
sive characterization of superior cortical venous anatomy and 
to discuss this in relation to prospects for endovascular device 
implantation.

METHODS
A systematic review of the literature was performed, compliant 
with the preferred reporting items of systematic reviews and 
meta-analysis (PRISMA) guidelines (online supplemental mate-
rial 1). The review was ineligible for registration with PROS-
PERO due to the absence of a defined clinical outcome.

Search strategy
Scoping searches were performed to assess existing literature 
and refine the review question. Final search strategies (online 
supplemental material 2) were developed for three databases 
(MEDLINE, Embase, and CINAHL) using an iterative process. 
To maximize sensitivity, no automated search limits or restric-
tions were applied. Searches were performed using Ovid (Ovid 

Technologies, New York, USA) and EBSCOhost (EBSCO 
Information Services, Massachusetts, USA) from inception to 
December 15, 2023. A medical librarian (IK) at the University of 
Cambridge reviewed and provided comments on the searches, 
which were incorporated into the final strategies.

Eligibility criteria
Screening for eligibility was performed in accordance with the 
following criteria:

Inclusion criteria
	► Human study
	► English language
	► Superior cortical cerebral veins (small superior cortical veins, 

superior anastomotic vein/vein of Trolard, Rolandic vein)
	► Any description of venous anatomy (position, diameter, 

angle, features)

Exclusion criteria
	► Non-human
	► Pathology likely affecting cortical venous anatomy (eg, arte-

riovenous malformation, cortical vein thrombosis)
	► Letter

Figure 1  Illustration of cortical arteries and veins and proximity to regions of interest. Vessels flowing into the dural venous sinuses are not 
surrounded by dura. ACS, artery of the central sulcus; APA, anterior parietal artery; PC, premotor cortex; PFA, prefrontal artery; PMC, primary motor 
cortex; PPA, posterior parietal artery; PPC, posterior parietal cortex; PSC, primary sensory cortex; PTA, posterior temporal artery; SCV, superior cerebral 
veins; SigS, sigmoid sinus; SMC, supplementary motor cortex; SMCV, superficial middle cerebral vein; SSS, superior sagittal sinus; TS, transverse sinus; 
VL, vein of Labbé (inferior anastomotic vein); VT, vein of Trolard (superior anastomotic vein). Used with permission from © Jill K Gregory, CMI.
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	► Editorial
	► Opinion article
	► Conference abstract
	► Full text not available

Selection process
Title and abstract screening were completed using Rayyan 
(Rayyan Systems Inc, Cambridge, USA). Two medically trained 
reviewers (JB and AM) performed screening. An initial blinded 
pilot screen of 50 records was completed to ensure concordance 
in application of inclusion and exclusion criteria. Decisions were 
unblinded with discussion between reviewers before proceeding. 
Both reviewers worked independently and were blinded to each 
other’s decisions until screening was complete. For the purpose 
of this study, the term ‘cortical vein’ was defined to include any 
vessel draining into a cerebral venous sinus including anasto-
motic vessels and vessels situated on the surface of the pia mater 
which bridge the subdural space.

Data extraction, critical appraisal, and data synthesis
Articles were retrieved for full-text screening and data extraction 
using a piloted table. This was completed in duplicate by JB and 
AM. Any differences were reconciled through discussion and 
consensus. Quality assessment and analysis of risk of bias of all 
selected full-text articles were performed using the Anatomical 
Quality Assurance (AQUA) tool from the International Evidence-
Based Anatomy (iEBA) working group.20

Due to the study heterogeneity and limited anatomical data, a 
meta-analysis was not possible. A qualitative synthesis was there-
fore conducted.

Data availability
The complete data extraction form can be found in the supple-
mentary materials (online supplemental material 3).

RESULTS
Study selection
A total of 2320 records were identified from database searching. 
After removing duplicates, the initial search identified 1406 arti-
cles. Subsequent abstract and title screening eliminated 1307 
articles, leaving 99 shortlisted for full text review. Of these, 24 
were included in this study and four additional articles were 
identified by citation searching that met the inclusion criteria 
(figure 2).

Study characteristics
A total of 27 primary studies and one secondary study were 
included. All primary studies were observational in nature. In 
the primary clinical studies, the mean patient age ranged from 27 
to 74 years and publication years were between 1989 and 2023.

The majority (19/27) of the included primary studies involved 
cross-sectional imaging. The remaining studies were either 
cadaveric (6/27) or intraoperative (1/27). One study comprised 
more than one form of analysis.

Only 19 (70.3%) primary studies reported quantitative 
anatomical data as specified by column headings in the piloted 
data extraction table. An evidence summary table of primary 
studies reporting anatomical data is shown in table  1. The 
summary table for the remaining studies can be found in online 
supplemental material 3. Anatomical data relating to the vein 
of Trolard (superior anastomotic vein) was most commonly 
reported. The most often reported feature was occurrence of the 
vein of Trolard.

Risk of bias
A risk of bias assessment is reported for all included studies 
(online supplemental material 4). In summary, imaging methods 
were poorly reported and it was sometimes not clear if a second 
investigator repeated vessel measurements. When reporting 
results, venous classification systems were often proposed based 

Figure 2  PRISMA flow diagram of study selection.
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on a small patient sample, increasing the chance of bias. No 
study was excluded due to risk of bias.

Superior sagittal sinus
Anatomical features of the SSS were quantified and reported 
by seven included studies. Mean SSS diameter ranged from 
3.84 mm in the coronal region to 9.9 mm in the mid occipital 
region (table  2). One study (cadaveric dissection) measured 
mean SSS arc length to be 338.8 mm and another (imaging 
study) measured a mean arc length of 256 mm.

Arachnoid granulations present in the SSS were measured in 
two included studies (see online supplemental material 3). The 
mean number of SSS tributaries ranged from 11 to 45, with most 
branches clustered in the anterior frontal region (table 3).

Superior anastomotic vein (vein of Trolard)
Anatomical data relating to the vein of Trolard were reported by 
11 included articles. Where prevalence was reported, the vein of 
Trolard was present in between 26% and 80% of subjects. No 
study reported a significant difference in the occurrence of the 
vein of Trolard in one cerebral hemisphere relative to another. 

The vein of Trolard most commonly overlay the cortex posterior 
to the central sulcus (table 4).

The mean angle of the anastomosis between the vein of Trolard 
and SSS ranged from 50° to 103° while the mean venous length 
was between 1.6 mm and 6.5 mm (see online supplemental mate-
rial 3).

Central sulcal vein (Rolandic vein)
Anatomical data relating to the central sulcal vein was reported 
by only two studies. In one study the proximal central sulci vein 
diameter was measured to be 4.9 mm.

Venous wall composition and mechanical properties
No included study reported findings related to venous wall 
composition and mechanical properties—namely, wall thickness, 
compliance, stretch, and compressibility.

Miscellaneous findings
One study identified statistically significant age-related changes 
in cortical vein diameter, with a notable decrease in diam-
eter beyond the age of 40–49 years, based on conventional 

Table 1  Descriptive overview of included studies reporting quantitative cerebral venous anatomical data

Study No of subjects
% 
Men Mean (range) age, years Study type (technique) Reported anatomical data

Ahmed et al, 201843 204 47.1 ns (2–75) Primary (cross-sectional imaging: MRV) Vein of Trolard: occurrence, laterality

Andrews et al, 198944 10 45 27 (2 months–76) Primary (cadaveric dissection) SSS: diameter, number of branches
Vein of Trolard: linear length, anastomosis 
angle to SSS

Bruno-Mascarenhas et al, 
201745

60 50 39.22 (20–59) Primary (cadaveric dissection) SSS: diameter, arc length, number of 
branches
Vein of Trolard: occurrence, distance from 
central sulcus, number of branches

Fang et al, 201546 90 58.9 41 (10–78) Primary (cross-sectional imaging: CTA) Vein of Trolard: occurrence

Haroun et al, 2007a47 98 85 27 (2 months–76) Primary (cross-sectional imaging: MRV) Vein of Trolard: occurrence

Haroun et al, 2007b48 110 45 27 (2 months–76) Primary (cross-sectional imaging: MRI/MRV) Arachnoid granulations: size, prevalence, 
morphology

Houck et al, 201949 682 40.9 73.9 (SD 5.93) Primary (cross-sectional imaging: MRI) SSS: diameter

Ikushima et al, 200650 404 40.6 49.8 (2–84) Primary (cross-sectional imaging: MRI) Vein of Trolard: occurrence, distance from 
central sulcus

Naidoo et al, 202221 100 40 Median: 30–39 (ns) Primary (conventional angiography) Vein of Trolard: occurrence, diameter 
(variation with age)

Oka et al, 198528 10 ns ‘Adult’ Primary (cadaveric dissection) Vein of Trolard: diameter, linear length, 
number of branches, anastomosis angle 
to SSS
Rolandic vein: distance from central 
sulcus, linear length, number of branches, 
anastomosis angle to SSS

Oxley et al, 201641 50 40 34.5 (18–73) Primary (cross-sectional imaging: MRI) Rolandic vein: diameter, arc length

Santos Silva et al, 2014 59 36 ns (13–65) Primary (conventional angiography) Vein of Trolard: diameter

Tomasi et al, 202114 21 57 71 (51–88) Primary (cadaveric dissection) Vein of Trolard: distance from central sulcus

Widjaja et al, 2004 50 ns Median: 5 (0–17) Primary (cross-sectional imaging: MRV) Vein of Trolard: occurrence

Yagmurlu et al, 2022 8 ns ns Primary (cadaveric dissection) Arachnoid granulations: size, prevalence

Karatas et al, 202323 20 40 74 (46–92) Primary (cadaveric dissection) Vein of Trolard: diameter, occurrence

Brockmann et al, 201124 30 50 46.8 (24–84) Primary (cross-sectional imaging: CTA) SSS: diameter, arc length, number of 
branches

Sampei et al, 199633 21 66.7 ns Primary (cadaveric dissection) Small cortical vessels: diameter

Han et al, 200725 66 59.1 46.8 (11–90) Primary (cadaveric dissection; DSA) SSS: number of branches
Small cortical vessels: diameter

CTA, CT angiography; DSA, digital subtraction angiography; MRI, magnetic resonance imaging; MRV, magnetic resonance venography; ns, not specified.
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angiography.21 Another study found evidence of myoendothe-
lial tissue at the confluence of the cortical veins with the SSS,22 
suggesting the presence of sphincters which regulate venous flow. 
Karatas and colleagues identified complex junctions of cortical 
veins where they adjoin the SSS, while they also quantified the 
size of parasagittal venous lacunae.23 Mean venous lacunae 
measured 5.2×1.5 cm on the right and 5.0×1.7 cm on the left, 
each connected by multiple slit-like openings to the SSS. One 
study found that cortical veins at the coronal suture typically 
drain into lacunae rather than directly into the SSS.24 However, 
Han and colleagues reported that, while lacunae often obscure 
the dural entrances of the cortical veins, lacunae do not directly 
receive these veins.25 Instead, they found that the cortical veins 
sometimes drain into small meningeal veins.

DISCUSSION
The objective of this systematic review was to synthesize current 
evidence on the anatomy of the superior cortical venous system 
with implications for endovascular device implantation. To 
our knowledge, this is the first comparison of cortical venous 
anatomical measurements from both radiological and cadaveric 

studies. Our findings show that the anatomical data are limited, 
inconsistent, and of low quality. We found substantial hetero-
geneity in the arrangement of the superior cortical veins, with 
differences found in venous diameter, length, confluence angle 
between the vein of Trolard and SSS, and location relative to 
the underlying cortex. Despite study limitations and anatomical 
variation, the vein of Trolard was consistently reported to be 
the largest diameter vessel in the superior system, and it was 
predominantly located posterior to the central sulcus. These 
findings, along with reports of myoendothelial sphincters and 
age-related variability, have implications for device design and 
preoperative planning for endovascular electrode arrays.

Advantages and challenges of implanting endovascular arrays 
in cortical veins
The development of endovascular BCI devices has transformed 
the delivery of intracranial electrodes, offering a minimally inva-
sive alternative to traditional surgical methods which require 
craniotomy. The cortical veins overlying the sensorimotor cortex 
represent high value targets for these devices as they are subdural 
and hence in closer association with the cortex than the venous 
sinuses. To date, endovascular devices have only been placed in 
the human SSS, capturing neural activity adjacent to areas of 
motor cortex representing the lower limb. However, one recent 
study has demonstrated the feasibility of implanting endovas-
cular electrode devices into smaller cerebral vessels.26 This study 
also showed the potential to record single unit activity from 

Table 2  Super sagittal sinus (SSS) diameter and arc length 
measurements

Authors Location on SSS
Mean±SD 
diameter, mm

Mean±SD arc 
length, mm

Bruno-Mascarenhas et 
al, 2017

Coronal 3.97 (ns)* 338.77 (321–
357)

Lambdoid 8.39 (ns)* ns

Torcular 9.94 (ns)* ns

Andrews et al, 2018 Mid anterior frontal 4.3 (1.9) ns

Mid occipital 9.9 (2.4) ns

Houck et al, 2019 Directly above the 
confluence of sinuses

6.18 (0.87) ns

Brockmann et al, 201124 Coronal 6.0 (1.9) 256 (16)

*This study measured cadaveric SSS and stated that cross-sectional measurements 
of SSS were of height and width, as the SSS is triangular in cross-section. Bruno-
Mascarenhas et al describe arc length measurement as the distance along a long 
silk thread from the site of origin (glabella) to the site of termination (torcula) of 
the SSS.
ns, none specified.

Table 3  Superior sagittal sinus (SSS) branching measurements

Authors Location on SSS
Mean±SD number 
of SSS branches

Bruno-Mascarenhas et al, 2017 Right side 13–19 (ns)*

Left side 14–19 (ns)*

Andrews et al, 2018 Anterior frontal 6.5 (2–14)

Occipital 1 (0–3)

Parietal 4 (1–9)

Posterior frontal 3 (2–6)

Yagmurlu et al, 2022 Entire SSS 45 (5.62)†

Brockmann et al, 201124 Entire SSS 12.3 (3.3)

Han et al, 200725 Entire SSS 11 (ns)

*This study only reports a range of SSS branches across specimen.
†It should be noted that this study reports this number as the total of the following: 
openings to the SSS from cortical veins, the number of arachnoid granulations, and 
the number of lateral lacunae.
ns, none specified.

Table 4  Relation of vein of Trolard to central sulcus (reported 
measures and values from relevant studies)

Authors Reported measure(s) Reported value(s)

Ikishima et al, 2006 Prevalence of a pre-central vein of Trolard 11%

Prevalence of a central vein of Trolard 
(aka Rolandic)

22%

Prevalence of a post-central vein of 
Trolard

41%

Bruno-Mascarenhas 
et al, 2017

Average distance (range) in mm from vein 
of Trolard to central sulcus

Right side
3.90
Left side
4.34

Tomasi et al, 2022 Average distance (±SD) in mm between 
Trolard/SSS confluence and central sulcus 
midpoint

Right side
6.0 (26)
Left side
13.1 (30.1)

Mean diameter of vein of Trolard ranged from 2.1 mm to 3.3 mm in cases of single 
occurrence (table 5).

Table 5  Vein of Trolard diameter

Authors
Mean vein of Trolard 
diameter, mm Range, mm

SD, 
mm

Oka et al., 198528 3.3 2–5 ns

Santos Silva et al, 2014 3.32 1.25–8.28 0.11

Naidoo et al, 202221 2.14 (single occurrence) ns 0.472

2.19 (double occurrence) ns 0.604

1.63 (triple occurrence) ns ns

Karatas et al, 202323 4.4 (right) ns ns

3.8 (left) ns ns

Note: Reported diameter, with relevant measure of variability provided (no standard 
across studies was used).
ns, not specified.
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within blood vessels by exploring the arterial system of a rat 
model. In addition to improved signal quality, a dense network 
of vessels in proximity to the motor cortex may allow for more 
implantation sites, leading to greater coverage and better spatial 
localization of signals.27

Despite this breakthrough demonstration of neural recording 
from within micrometre-scale vasculature, we identified differ-
ences in the anatomy of the human cortical venous system 
that limit translation. Zhang and colleagues performed device 
implantation just distal to the middle cerebral artery/anterior 
cerebral artery bifurcation. The branching angle was >100° 
for both vessels, reducing challenges faced when manoeuvring 
of the delivery catheter and propelling the device with saline 
flow. In the cortical venous system, acute confluence angles were 
reported in multiple studies,24 28 along with hairpin turns and 
possibly the emptying of veins into lacunae, complicating device 
delivery.

Cortical venous walls are also less robust than in the arterial 
system, with reduced wall thickness, muscularity, and elasticity.29 
Moreover, the cortical veins are especially vulnerable to perfora-
tion as they traverse the subdural space, which provides no addi-
tional structural support. This vulnerability has been extensively 
documented in the context of acute subdural hematoma.30

Heterogeneity in cortical venous anatomy
Variability is a prominent characteristic of the cortical venous 
system, unlike the cerebral venous sinuses. The mean number 
of SSS branches ranged from 14.5 to 45 and confluence angles 
varied by over 50°. Moreover, the vein of Trolard was identified 
in fewer than 65% of cases in five studies. The question remains 
whether this variability is individualized or if a few anatomical 
phenotypes exist, with practical applications.

Three included studies proposed a classification system for the 
superior cortical veins.14 23 28 These systems grouped drainage 
patterns into five or fewer distinct phenotypes based mainly 
on network topology or vessel dominance, particularly of the 
anastomotic veins. All classifications were devised explicitly to 
support preoperative planning for neurosurgical access to intra-
cranial pathology.

While these classifications may aid neurosurgical planning, 
we believe they would have limited application in the context 
of endovascular device implantation. Preprocedural planning 
for neural recording and subsequent decoding requires a more 
detailed focus on the underlying cortex. Given the lack of studies 
reporting phenotypes in these terms, future work may involve 
creation of a classification system that accounts for cortical 
regions traversed by each major vessel.

Although a greater engineering challenge, an ability to access 
small veins within the cortical sulci may obviate concerns about 
variability. For instance, the vein of the Rolandic sulcus, which 
we expect is present in a greater number of individuals than 
certain anastomotic vessels, may be an attractive target for 
consistent sensorimotor recordings.

Our findings suggest that an individualized approach may be 
necessary when planning device implantation in cortical veins. 
Therefore, future clinical workflows may involve prospective 
planning of training and decoding approaches based on prepro-
cedural imaging.

Implications of cortical vein diameter and position for 
implantation feasibility
The vein of Trolard was consistently reported to be the largest 
cortical vein draining into the SSS, with a mean diameter ranging 

from 2.14 mm to 3.32 mm. Given its size, the vein of Trolard 
represents the logical first target for endovascular devices 
implanted in superior cortical veins. Existing endovascular 
stents are of appropriate diameter for implantation in the vein 
of Trolard (ie, 2 mm), including stents which have been deployed 
intracranially.31 32 This suggests incremental modifications to 
miniaturize stent electrode arrays may be sufficient to develop 
an array for implantation in a cortical vessel. However, a novel 
approach may be required to access the average cortical vessel of 
the superior venous system. The frontopolar vein, a significant 
vessel overlying the anterior frontal lobe, was found to have a 
mean diameter of 1.9 mm with a lower bound of 0.5 mm.33 Of 
greater interest are the numerous cortical vessels which bridge 
the subdural space and are in closer proximity to the cortex. 
While we have no precise estimate of bridging vein diameter 
in the cortical venous system, these vessels measure <1 mm in 
diameter in other areas of the brain.34

The vein of Trolard was most commonly identified posterior 
to the central sulcus (table 4). As its course most commonly over-
lies the parietal lobe, there may be implications for the decoding 
of motor intention. Specifically, decoding from the underlying 
somatosensory cortex (S1) may be more appropriate than the 
primary motor cortex (M1), the traditional target of motor 
BCIs.35 Somatosensory activation has long been recognized to 
have a role during movement execution and attempted move-
ment.36 Recent studies using implanted electrode arrays have 
revealed S1 activation during imagined movement, even in the 
absence of sensory feedback, indicating that S1 recordings could 
provide valuable control signals for BCIs.37 If the vein of Trolard 
transits more posteriorly across the parietal lobe, further studies 
have demonstrated decoding of motor imagery from the poste-
rior parietal cortex of human subjects.38

Altogether, the vein of Trolard diameter may be appropriate 
for the delivery of novel stent electrode devices; however, most 
cortical vessels may not be amenable to this approach based on 
the lower bound diameter of existing conventional stents. Plan-
ning for endovascular device implantation in the vein of Trolard 
may require consideration of decoding in the parietal lobe. 
Previous studies have demonstrated the feasibility of decoding 
motor intent from both anterior and posterior regions.

Age-related changes may influence decisions in younger 
patients
One included study identified significant changes in cortical 
vein diameter with age.21 These changes include a decrease in 
mean diameter after the fifth decade, which may be caused by 
stretching of the bridging cerebral veins due to age-related cere-
bral atrophy.39 Additionally, there is evidence of increased wall 
thickness in bridging veins with age.40 Such changes in vessel 
diameter may be particularly relevant for younger implant 
recipients who have decades of potential change following 
implantation.

Myoendothelial sphincters and complex anatomy present 
challenges for device delivery
Another included study characterized the presence of sphincters 
at the confluence of the cortical veins with the SSS.22 Contrac-
tions of myoendothelial tissue at these points may present a 
challenge when advancing a delivery catheter into the vessels. 
To mitigate this, the concurrent delivery of a vasodilating agent 
during implantation may be necessary. Challenges are also 
presented by slit-like openings in the SSS to venous lacunae, 
cortical vein drainage into lacunae, and complex junctions of 
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cortical veins, each of which may complicate the delivery of a 
miniaturized device.

Study limitations
Anatomical data collected in this review were limited, inconsis-
tent, and of low quality, thereby impeding interpretation and 
preventing meta-analysis. For instance, one study labelled sulcal 
veins which were superficial to the gyri,41 making comparisons 
challenging. These inconsistencies in labelling likely contrib-
uted to the variability in measurements reported across studies. 
Our risk of bias assessment highlighted possible sources of bias, 
including insufficient reporting of study methods and poten-
tial overinterpretation of results. The validity of quantitative 
comparisons between included studies may have been limited 
by the methods used for investigation. Formalin fixation, 
commonly used in cadaveric studies, is known to cause shrinkage 
and thus an underestimation of measurements.42 Conversely, 
cadaveric studies were able to identify vessels of a much smaller 
diameter than radiological studies, even when using DSA.25 
A notable omission from our findings was data on vessel wall 
structure and properties. This presents an opportunity for future 
investigations.

CONCLUSION
This systematic review highlights the significant variability in 
superior cortical venous anatomy, which has important impli-
cations for preprocedural planning and endovascular device 
implantation. Proposed classification systems are of limited 
utility as they do not account for the relation of vessels to the 
underlying cortex. Although the vein of Trolard is the largest 
draining vessel, its most common location posterior to the 
central sulcus may require unconventional decoding of motor 
intention. Overall, further research is necessary to better char-
acterize superior cortical venous anatomy including sulcal vein 
measurements, vessel wall structure, and relations to underlying 
cortex. Future work is also needed to characterize the cortical 
venous anatomy beyond the superior system, alongside the 
venous anatomy of the deep brain.
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